Engines

There are many algorithms to create covering test sets. This library implements two, and you can select which one to use with a keyword argument.

  • IPOG: Default The in-parameter-order generator is fast and gives the same result every time.
  • GND: This greedy, non-deterministic generator searches for shorter answers and can be slow.
  • Excursion: The excursions aren't much of an algorithm. This is a tag to ask the all_tuples function to generate excursions.

For instance, this example has ten parameters which can each take one of four values.

parameters = fill(collect(1:4), 10)
fast_and_longer = all_pairs(parameters...; engine = IPOG())
28-element Vector{Vector{Int64}}:
 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 [1, 2, 2, 2, 2, 2, 2, 2, 2, 2]
 [1, 3, 3, 3, 3, 3, 3, 3, 3, 3]
 [1, 4, 4, 4, 4, 4, 4, 4, 4, 4]
 [2, 1, 2, 3, 4, 1, 2, 3, 4, 1]
 [2, 2, 1, 4, 3, 2, 1, 4, 3, 2]
 [2, 3, 4, 1, 2, 3, 4, 1, 2, 3]
 [2, 4, 3, 2, 1, 4, 3, 2, 1, 4]
 [3, 1, 3, 4, 2, 1, 3, 4, 2, 1]
 [3, 2, 4, 3, 1, 2, 4, 3, 1, 2]
 ⋮
 [4, 4, 3, 4, 2, 3, 2, 1, 3, 2]
 [1, 4, 1, 3, 1, 1, 4, 4, 3, 3]
 [2, 3, 4, 3, 4, 1, 3, 1, 2, 2]
 [3, 2, 2, 1, 3, 1, 3, 4, 2, 4]
 [4, 1, 1, 4, 3, 3, 2, 3, 1, 4]
 [1, 1, 3, 3, 4, 2, 4, 2, 1, 3]
 [2, 2, 1, 2, 1, 4, 3, 1, 2, 3]
 [3, 2, 2, 2, 3, 3, 4, 3, 4, 1]
 [4, 1, 4, 4, 4, 4, 2, 2, 3, 2]
rng = Random.MersenneTwister(9790242)
slow_and_short = all_pairs(parameters...; engine = GND(rng = rng, M = 50))
35-element Vector{Vector{Int64}}:
 [3, 1, 2, 1, 4, 2, 1, 2, 3, 4]
 [1, 2, 3, 3, 3, 1, 3, 4, 1, 4]
 [2, 4, 1, 2, 1, 2, 4, 4, 2, 3]
 [4, 4, 4, 4, 4, 4, 2, 4, 4, 1]
 [2, 3, 2, 3, 2, 3, 1, 1, 4, 1]
 [3, 1, 4, 2, 2, 1, 2, 1, 2, 2]
 [3, 1, 3, 3, 1, 4, 4, 3, 1, 1]
 [4, 4, 1, 1, 2, 1, 1, 3, 3, 3]
 [1, 3, 1, 2, 1, 4, 1, 2, 3, 2]
 [2, 4, 1, 4, 4, 3, 3, 1, 1, 2]
 ⋮
 [3, 3, 1, 3, 4, 2, 4, 3, 1, 3]
 [4, 1, 4, 3, 1, 4, 1, 1, 3, 4]
 [1, 3, 2, 4, 3, 4, 4, 3, 2, 1]
 [3, 2, 1, 3, 1, 3, 4, 2, 2, 2]
 [4, 4, 4, 4, 4, 2, 1, 2, 1, 4]
 [2, 2, 1, 2, 3, 1, 3, 2, 1, 1]
 [1, 1, 4, 1, 4, 4, 2, 4, 2, 4]
 [4, 3, 4, 3, 2, 1, 3, 3, 1, 4]
 [3, 3, 1, 1, 3, 2, 3, 4, 3, 2]